A non-degenerate Rao-Blackwellised particle filter for estimating static parameters in dynamical models

نویسندگان

  • Fredrik Lindsten
  • Thomas B. Schön
  • Lennart Svensson
چکیده

The particle filter (PF) has emerged as a powerful tool for solving nonlinear and/or non-Gaussian filtering problems. When some of the states enter the model linearly, this can be exploited by using particles only for the “nonlinear” states and employing conditional Kalman filters for the “linear” states; this leads to the Rao-Blackwellised particle filter (RBPF). However, it is well known that the PF fails when the state of the model contains some static parameter. This is true also for the RBPF, even if the static states are marginalised analytically by a Kalman filter. The reason is that the posterior density of the static states is computed conditioned on the nonlinear particle trajectories, which are bound to degenerate over time. To circumvent this problem, we propose a method for targeting the posterior parameter density, conditioned on just the current nonlinear state. This results in an RBPF-like method, capable of recursive identification of nonlinear dynamical models with affine parameter dependencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rao-Blackwellised particle methods for inference and identification

We consider the two related problems of state inference in nonlinear dynamical systems and nonlinear system identification. More precisely, based on noisy observations from some (in general) nonlinear and/or non-Gaussian dynamical system, we seek to estimate the system state as well as possible unknown static parameters of the system. We consider two different aspects of the state inference pro...

متن کامل

Rao-Blackwellised particle smoothers for mixed linear/nonlinear state-space models, Report no. LiTH-ISY-R-3018

We consider the smoothing problem for a class of mixed linear/nonlinear state-space models. This type of models contain a certain tractable substructure. When addressing the ltering problem using sequential Monte Carlo methods, it is well known that this structure can be exploited in a Rao-Blackwellised particle lter. However, to what extent the same property can be used when dealing with the s...

متن کامل

People Tracking with Anonymous and ID-Sensors Using Rao-Blackwellised Particle Filters

Estimating the location of people using a network of sensors placed throughout an environment is a fundamental challenge in smart environments and ubiquitous computing. Id-sensors such as infrared badges provide explicit object identity information but coarse location information while anonymous sensors such as laser range-finders provide accurate location information only. Tracking using both ...

متن کامل

RMSE Based Performance Analysis of Marginalized Particle Filter and Rao Blackwellised Particle filter for Linear/Nonlinear State Space Models

Particle filters and Rao Blackwellised particle filter have been widely used in solving nonlinear filtering problems. The particle filter is fairly easy to implement and tune, its main drawback is that it is quite computer intensive, with the computational complexity increasing quickly with the state dimension. One solution to this problem is to marginalize out the states appearing linearly in ...

متن کامل

An explicit variance reduction expression for the Rao-Blackwellised particle filter

Particle filters (PFs) have shown to be very potent tools for state estimation in nonlinear and/or non-Gaussian state-space models. For certain models, containing a conditionally tractable substructure (typically conditionally linear Gaussian or with finite support), it is possible to exploit this structure in order to obtain more accurate estimates. This has become known as Rao-Blackwellised p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012